
Motion Detection

Peter Elsea 3/8/11 1

Simple Motion Detection with Jitter
One of the most common applications of Max /Jitter in art is triggering installation
activity based on the presence or motion of a visitor. There are many ways of doing this
with security hardware (switches, IR sensors and the like) but the most flexible and
easiest to set up are based on a video camera.

Hot Spots
You can easily watch a single pixel of the camera image with the getcell message.
Trouble is, people wander around unpredictably and may not hit that particular pixel. A
better strategy is to divide the area into zones or hot spots.

Figure 1.

Figure 1 shows the basic approach. The srcdimstart and srcdimend messages to a
jit.matrix will focus the image on a small section of the original. Keeping this matrix
small will speed up performance. In figure 1 the hot spot matrix is 32 by 24 and only
responding to the red. (This image is infrared, so a person will register as white.) The
jit.3m object gives a quick assessment of the mean brightness, which will change when a
figure walks into it. You can use the [>] object (greater than) to detect the visitor's
presence. Unfortunately, the mean provides a very narrow range of values, so this can be
fussy to set, especially if the basic light level changes.

A bit more reliable scheme is to trigger on the difference between the maximum and
minimum pixel value. This will be resistant to gradual changes in the lighting such as
those from cloudy to clear. Figure 2 illustrates:

Motion Detection

Peter Elsea 3/8/11 2

Figure 2.
The simplest way to detect presence in the zone is to set a threshold value. The [<] object
produces 1s whenever the zone is occupied. This is a series of 1s, which need some
processing in order to trigger actions. Usually we want to detect entry into a zone to
trigger some process. A togedge on the [>] output will do this, but there is a better way.
My Lpast object is similar to the stock past object in that it will only bang when the input
rises to the target value. The difference is Lpast lets you determine the reset value the
input must drop below before it can trigger again. (The difference between the target
value and the reset value is hysteresis.) Since pixels are always varying somewhat, the
past object is subject to multiple triggers as the visitor enters the zone.

Motion detection
To make the zone sensitive to motion instead of presence, we use frame differencing.
Figure 3 shows the basic technique. The reduced image is fed to a second matrix placed
to the left of the patch. A clone of the matrix (same name) is banged before the jit.qt.grab
object and the old frame is sent to the right inlet of a jit.op. When the new frame comes
in, only pixels that have changed will be bright. Jit.3m can be tapped for the max or
mean. This will be more sensitive if you slow down the frame rate.

The flaw in this is if the visitor stands perfectly still, there will be no detection. In figure
4, the processing is extended to detect no motion for a specified period of time. The ticks
are received from the qmetro and applied to a counter. This counter is reset to 0 anytime
motion is detected in the zone. If the counter exceeds 100 (no motion for 3 seconds), we
can assume the zone is empty. This technique can be applied to the master image to sense
when there are no visitors at all and shut down.

Figure 4 also shows a slightly more efficient way to store the previous frame. The trigger
object will route the current frame to the right of teh jit.op after the comparison is
complete.

Motion Detection

Peter Elsea 3/8/11 3

 Figure 3. Frame difference technique

Figure 4. Refined frame difference

Counting to determine when motion has stopped is necessarily a slow process. If you
anticipate your visitors may sit still for a long time but need the system to respond
quickly to their exit, you can compare the current frame to a reference image. All you

Motion Detection

Peter Elsea 3/8/11 4

have to do is capture a frame when the hot spot is empty. Figure 5 shows how to do this
with the space bar. The bar opens a gate which is closed immediately after the matrix
passes through.

Figure 5. Comparison with base image

The base image is stored in the right inlet of the jit.op. This method is very reliable when
the lighting is stable, but the base image should be refreshed fairly often. (Perhaps when
the counter method shows no movement for a minute or more.)

Direction of Motion
Detecting direction of motion requires two zones that overlap, such as the red and blue
areas marked in figure 6.

Figure 6.

Motion Detection

Peter Elsea 3/8/11 5

The trick behind direction detection is simple. If the subject is in the blue zone when he
enters the red zone, he is moving from blue to red. If the subject is in the red zone when
he enters the blue zone, he is moving from red to blue. Thus if we use togedge on red to
capture the state of blue, we know the direction. Figure 7 shows the mechanism.

Figure 7.
This works best when the visitor's motion is constrained, perhaps by a doorway.

The ability to draw a rectangle on the master image and have that determine the size of
the hot spots is a very useful trick. Here's how it's done;

Motion Detection

Peter Elsea 3/8/11 6

Figure 8. master image for figure 7.

The image from jit.qt.grab (or jit.qt.movie for practice) is sent via jit.lcd to the pwindow.
If a matrix is input to jit.lcd, all drawing will occur on top of the image. (Matrix input is
tantamount to clear.) When a user clicks in the pwindow, a mouse message is sent out the
right outlet. This is formatted "mouse X Y button" with some following items for control
keys and the like. Most of the messages are "mouse X Y 1" but when the mouse is
released, a single "mouse X Y 0" marks the release point. These messages are processed
in the redzone subpatch like this:

Motion Detection

Peter Elsea 3/8/11 7

Figure 9. Mouse processing subpatch (redzone)

The gate is controlled by an external toggle to turn on box resizing. On the first message
in the X and Y values are loaded to the int boxes and sent on to the first two positions of
pack by the togedge responding to the 1 of the button state. After this, as long as the
mouse is held down, the last two items in pack are updated but the first two are
unchanged. When the mouse is released, the 0 in the mouse state primes togedge to fire
on the next mouse down message. The result is a series of lists of the oredr left, top, right,
bottom, just what is needed to draw a box and set the size of the spot matrices. These go
to a framerect command fed to the jit.lcd and srcdimstart and srcdimend messages to the
spot matrix.

Figure 10. note how the framerect command specifies color.

Motion Detection

Peter Elsea 3/8/11 8

Watching a Line
Sometimes we want to detect where objects cross a line. The next patch shows that, in the
context of detecting fingers playing an invisible harp.

Figure 11.

Figure 11 shows half of the patch. This simply grabs an image from the computer
camera, reverses the image to give a mirror effect (performance is much easier watching
a mirror than a raw image.) and draws a red box over the zone that will trigger notes.

Motion Detection

Peter Elsea 3/8/11 9

Figure 12.
Figure 12 shows how the image is processed to extract triggers. The key object for this is
jit.spill which can convert a selected row of a matrix to a list. Since we are interested in a
vertical line, we must convert columns to rows.

